Lompat ke konten Lompat ke sidebar Lompat ke footer

Himpunan, Pengertian, Contoh, Notasi, Anggota Dan Jenis-Jenis Himpunan

Pengertian Himpunan


Himpunan ialah kumpulan objek atau benda yang elemen/anggota-anggotanya sanggup didefinisikan dengan terperinci serta mempunyai nilai kebenaran yang niscaya yakni benar atau salah dan bukan relatif.

Sehingga sanggup kita ketahui mana objek yang termasuk dalam anggota himpunan dan objek yang bukan anggota himpunan.
 ialah kumpulan objek atau benda yang elemen Himpunan, Pengertian, Contoh, Notasi, Anggota dan Jenis-Jenis Himpunan
Irisan dari dua himpunan yang dinyatakan dengan diagram Venn


Contoh Himpunan


1. Kumpulan kendaraan beroda tiga, anggotanya sanggup ditentukan dengan terperinci yaitu becak, bajaj, bemo.
2. Kumpulan bilangan bulat positif kurang dari 10, anggotanya sanggup ditentukan dengan terperinci yaitu 1,2,3,4,5,6 dan seterusnya.
3. Kumpulan binatang yang berkembang biak dengan bertelur, anggotanya sanggup ditentukan dengan terperinci yaitu burung, ayam, bebek, komodo, kadal, dan lain-lain.

Contoh Bukan Himpunan


1. Kumpulan baju-baju bagus, anggotanya tidak sanggup ditentukan dengan terperinci alasannya ialah setiap orang mempunyai pandangan sendiri-sendiri menyerupai apa baju yang bagus. Artinya baju cantik berdasarkan seseorang belum tentu cantik berdasarkan orang lain.

2. Kumpulan makanan enak, anggotanya tidak sanggup ditentukan dengan terperinci alasannya ialah lezat berdasarkan seseorang belum tentu lezat berdasarkan orang yang lain. hal ini biasanya disebut dengan relatif.

Notasi Himpunan


Dalam menyatakan atau penulisan sebuah himpunan umumnya terdapat beberapa ketentuan yaitu:

1. Nama himpunan biasanya ditulis dengan karakter besar/kapital.
2. Objek yang termasuk anggota himpunan ditulis didalam tanda kurung kurawal menyerupai {....}
3. Masing-masing anggota himpunan dipisahkan dengan tanda koma (..,..)
4. Sementara anggota himpunan ditulis menggunakan karakter kecil.

Contohnya: himpunan binatang laut, L = {ikan,cumi-cumi,penyu,kerang,...dan seterusnya}

Cara Menyatakan Suatu Himpunan


Untuk menyatakan suatu himpunan dalam matematika setidaknya ada beberapa cara, yaitu:

1. Menyatakan himpunan menggunakan kata-kata(deskripsi) atau menyebut syarat-syaratnya.

Contohnya:
  • A = { bilangan cacah kurang dari 30 }
  • B = { nama-nama hari dalam satu minggu}
  • C = { bilangan orisinil antara 6 hingga 20 }

2. Menyatakan himpunan dengan cara menyebutkan anggotanya(tabulasi).

Yakni dengan cara elemen/anggota himpunan ditulis dalam tanda kurung kurawal dan masing-masing anggota yang satu dengan yang lain dipisahkan menggunakan tanda koma.

Contohnya:

  • A = { senin,selasa, rabu, kamis, jumat, sabtu, ahad },  untuk himpunan yang anggotanya sedikit atau terbatas.
  • B = { Banyumanik, Candisari, Gayamsari, Pedurungan, Semarang Selatan, ....., Tembalang }, untuk meyatakan himpunan yang jumlah anggotanya banyak tetapi terbatas.
  • C = { 2, 3, 4, 5, 6, 7, ..... }, untuk meyatakan himpunan yang jumlah anggotanya banyak serta tidak terbatas.

3. Menyatakan himpunan dengan menggunakan notasi pembentuk himpunan.

Dengan menggunakan cara ini, anggota himpunan tidak perlu disebutkan satu persatu, tetapi hanya dituliskan aturannya saja.

Contoh:

A ialah himpunan bilangan cacah yang kurang dari 7.
Jika dinyatakan dengan cara tabulasi, himpunan ini sanggup ditulis dengan A = {0, 1, 2, 3, 4,5,6}.

Sementara jikalau dinyatakan dengan menggunakan notasi pembentuk himpunan, himpunan ini sanggup dituliskan A = {x|x < 7, x bilangan cacah}. Di baca, “himpunan A anggotanya ialah x sedemikian hingga x ialah kurang dari 7 dan x ialah bilangan cacah.”

Anggota Himpunan dan Bukan Anggota Himpunan


Sekarang kau sudah mengetahui apa itu himpunan? ya himpunan merupakan kumpulan benda atau objek yang anggotanya sanggup didefinisikan dengan jelas.

Dalam matematika anggota dari suatu himpunan disimbolkan dengan ∈ sedangkan 
bukan anggota himpunan disimbolkan dengan ∉ .

Dan banyaknya anggota dari suatu himpunan, contohnya kita menggunakan pola banyaknya anggota himpunan D ialah 10, sanggup kita tulis Notasi banyaknya anggota himpunan D sanggup ditulis n(D) = 10 yang dibaca banyaknya anggota himpunan D ialah 10.

Contoh:

D = himpunan 10 bilangan asli yang pertama.
Nama himpunan menggunakan karakter kapital.

D = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

Maka sanggup kita nyatakan n(D) = 10

3 ∈ D dibaca tiga merupakan anggota dari himpunan D.
4 ∈ D dibaca empat merupakan anggota dari himpunan D.

Untuk menyatakan bukan anggota himpunan dinotasikan dengan ∉.

11 ∉ D dibaca sebelas bukan anggota dari himpunan D.
13 ∉ D dibaca tiga belas bukan anggota dari himpunan D.

Jenis jenis Himpunan dalam Matematika


Macam-macam himpunan dalam Matematika ialah :

1. Himpunan Kosong


Himpunan kosong ialah suatu himpunan yang tidak mempunyai anggota apa pun atau himpunan dengan kardinalitas 0.

Himpunan kosong tidak mempunyai anggota apa pun, ditulis sebagai:

Ø = {}

Contoh:
M ialah himpunan bilangan prima genap.  Kenyataannya tidak ada bilangan prima genap.

2. Himpunan bagian


Suatu himpunan A sanggup dikatakan himpunan bagian/subset dari himpunan B jikalau setiap anggota A "termuat" di dalam B. Himpunan B ialah superhimpunan atau superset dari himpunan A alasannya ialah semua elemen A juga ialah elemen B.

Simbol untuk himpunan bab ⊂ untuk subset dan ⊃ untuk superset.

Contoh: 
A = { 1, 2, 3, 4, 5, 6 }  dan B = { 2, 4, 6 }

Seluruh anggota himpunan B ada dalam himpunan A, maka B ⊂ A  dan A ⊃ B.

3. Himpunan Sama


Dua buah himpunan yaitu Himpunan A dikatakan sama dengan himpunan B jika  keduanya mempunyai anggota yang sama. Maksudya A sama dengan B jikalau A merupakan himpunan bab dari B dan B merupakan himpunan bab dari A. Jika tidak seperi itu, maka sanggup kita katakan himpuanan A tidak sama dengan himpuanan B.

Dua buah himpunan sama jikalau semua anggota yang ada dalam kedua himpunan tersebut ialah sama, walaupun urutan nya tidak sama persis.

Notasi : A = B ↔ A ⊂ B dan B ⊂ A

Contoh:

1. Jika A = { 1,2,3,4,5} dan B = { 2,1,4,5,3 }, maka A ⊂ B dan B ⊂ A, maka A = B

2. Jika Himpunan A = {3,5,6,5} dan B = {5,3,6}, maka A ⊂ B dan B ⊂ A, maka A = B

2. Jika A = {3,4,5,4} dan B = {4,5}, maka A ≠ B

4. Himpunan Saling Lepas


Dua buah himpunan yang tidak kosong sanggup dikatakan saling lepas jikalau kedua himpunan tersebut tidak mempunyai anggota yang sama satu pun. Himpunan lepas dilambangkan dengan “//”.

Contoh:

Himpuanan A = {1,3,5,6} dan himpunan B = {2,4,8,10}
Maka A // B, Jika dinyatakan menggunakan diagram Venn:
 ialah kumpulan objek atau benda yang elemen Himpunan, Pengertian, Contoh, Notasi, Anggota dan Jenis-Jenis Himpunan
ariohebat.blogspot.co.id

5. Himpunan Ekuivalen


Himpunan dikatakan ekuivalen jikalau dua himpunan mempunyai jumlah anggota yang sama walaupun objek/benda nya tidak sama. Himpunan ekuivalen dilambangkan dengan  .

Contoh :

Jika A = {1,3,5,7,9,11} dan B = {a,b,c,d,e,f},
maka A B , alasannya ialah n(A)=6 dan n(B)=6.

Demikian pembahasan lengkap mengenai himpunan, mulai dari pengertian, pola dan jenis-jenis himpunan supaya bermanfaat.[]


Posting Komentar untuk "Himpunan, Pengertian, Contoh, Notasi, Anggota Dan Jenis-Jenis Himpunan"